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1. INTRODUCTION

The references at the end of this paper include a number of papers which deal
with uniform approximation using a generalized weight function. An important
application of the general theory is to the problem of obtaining starting values
for the Newton-Raphson iterative schemes for calculating inverses of certain
functions ([5], [6]). In working in this area it became evident that a theory of
uniform approximations with restricted ranges was needed. To be specific,
suppose bl and b2 are real-valued continuous functions on an interval I, and
b2(x) > bj(x) for all x E I. Suppose! E C(l) is to be approximated. Then the
problem is to find a best uniform approximation to jfrom a certain family R
whose members r satisfy r E C(I) and bl(x) < r(x) < bix) for all x E I. This
restricted range problem is a special case of the more general problem treated in
this paper.

2. STATEMENT OF THE PROBLEM

Let Xbe a compact topological space. Let u and I be two given elements of
C(X) such that l(x) < u(x) for all x E X. Let P be an n (>1) dimensional linear
subspace in C(X), and let Q be an m (>1) dimensional subspace in C(X).
Define

R = {r == plq: pEP, q E Q, q(x) > 0 V X EX}. (1)

If E represents the real axis, we consider a real-valued function W(x,y), with
domain X x E, satisfying the following properties:

If
D = {(x,y) E X x E: l(x) < y < u(x)}, (2)

I The first author's work was supported by NSF Grant GP-8686. The third author's work
was supported by NSF Grant GP-7624.
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(4)

then:

(a) W is continuous over D;

(b) (x,Y), (x,z) E Dandy < z => W(x,y) < W(x,z);

(c) (x,y) ED=> sgn W(x,y) = sgny;

(d) x E X and y > u(x) => W(x,y) = 00;

(e) x E X and y < lex) => W(x,y) = -00.

A function W with the above properties is called a generalized weight function.
Note that (2c) is intended to mean W(x,O) = 0 provided lex) <; 0 <; u(x).

Letl E C(X) be a function to be approximated. Then the problem considered
in this paper is that of finding an r E R such that

sup IW[x,f(x) - r(x)]j = inf sup IW[x,f(x) - r(x)]j. (3)
XEX fER XEX

Throughout this paper we shall use the notation

M[I - r] == sup IW[x,f(x) - r(x)]I·
XEX

We refer to (3) as "the problem to be solved," and we assume that the problem
is always such that infM(f - r] < 00.

rER

3. ApPLICATIONS

Suppose b l and b2 are functions as in the introduction. Then define

u(x) ==I(x) - b1(x)

lex) =-I(x) - b2(x)

(

+00 y> u(x)
W(x,y) = y lex) <; y <; u(x)

-00 y < lex).

For this generalized weight function the problem (3) is the restricted range
problem given in the introduction.

The standard one-sided approximation problem can be shown to be of the
form (3) in the following way. Define

W(x,y) = {+a:J Y > 0 (5)
y y<;O.

The problem (3) for the weight function (5) is that offinding an r E R such that
I(x) - rex) <; 0 V X E X, and for which

max I/(x) - rex) =- III- rll = minimum.
XEX
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Here u(x) =: O. An lex) could be defined as follows. Let ro be any element of R
such thatf(x) - ro(x) .;;; 0 'V x E X. Define

lex) =: -Ilf- roll - 1.

Then (5) can be written in the form (4) using the above u and l.
The function W(x, y) might be rather complicated. The paper [5] is con­

cerned with finding an approximation to X I /2 on X=: [a,b], where 0 < a < b;
the approximation is to be used to provide starting values for the standard
Newton-Raphson iteration to compute an accurate approximation to Xl /2.

It turns out that the problem can be subsumed by (3). Let € > 0 satisfy € q a l /2.

Then define

(

+(1)
W(x, y) = (sgn y)y2

2[x - yx1/2]

y> X 1/2 _ €

y';;;X1/2 _€.

(6)

(7)

Solutions to (3) using the weight function (6) provide optimal starting value
functions for the Newton-Raphson iterative calculation of X 1/2 on [a,b].
Notice that (6) is somewhat like (5) and is readily modified to fit the hypotheses
of (2).

4. EXISTENCE

As is usually the case in rational approximation theory, we are not able to
give a universal existence theorem. Therefore, in this section we restrict our
attention to the case where X is a real interval and R consists offunctions of the
form

r=:E=:aO+alx+"·+an-lxn-l.
q bo+b1x+'''+bm_1x'''-1

Here nand m are fixed nonzero positive integers.
PROPOSITION. Let R be the set ofrationalfunctions oftheform (7), and let X be

an interval [a,b]. If there exists an r E R for which M[f - r] < (1), then the
problem (3) has a solution.

Proof Let
p = inf M[f - r].

rER

Then one can restrict one's attention to those r E R for which M[f - r] .;;; p + 1.
Using the properties (2) it follows that there exists a B such that M[f - r] .;;;
p + 1 implies Ilf- rll .;;; B.

From here on the existence proof does not differ appreciably from that in the
unrestricted range case discussed in [7]. Thus, we omit the details.
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5. CHARACTERIZATION THEOREM

As in ordinary uniform rational approximation theory, the key theorem in
the theory of (3) deals with the question whether or not the origin of a certain
Euclidean space lies in some particular convex hull. The result for the
generalized weight function case (2) is somewhat more involved than for
ordinary rational approximation.

Consider an r E R, where R is as in (1), for which M[f - r] < 00. Then define

Sr = {h == p + rq: pEP, q E Q}. (8)

The set Sris a linear space ofdimensions ~ n + m -1. Letgl (x),g2(X), ... ,g.(x)
denote a basis for Sr' For x E Xwe use the notation

x == (gj(x), g2(X), ..., g.(x»);

that is, xis an s-tuple whose ith coordinate is g;(x).
For the particular r under consideration define

X+ 1 = {x E X: W(x,f(x) - rex)] = M[f- rn
X-I = {x E X: W[x,f(x) - rex)] = -M(f - r]}

X+ 2= {x E X:f(x) - rex) = u(x)}

X-2= {x E X:f(x) - rex) = lex)}.

These are sets of "critical" points. We shall use the notation given above in
stating and proving the characterization theorem. First, however, we shall
discuss certain exceptional cases which are not of general interest.

Note first that if X+ 1 n X_I i= .0 then M[f - r] = 0, and hence r must be a
solution to (3). Next consider Fig. 1. Here we have drawn a graph off(x) - rex)

y =u (x)

+d

b

_d[_~__~-:--~------ f----
y=f(x)-r(x)

I
y =I (x)

FIG. I.
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when W(x, y) is of the form (4). The particular weighted error curve
W[x,f(x) - rex)] under consideration has four critical points. Considering
them from left to right, the first is in both X+\ and X t2 , the second is in both
X-I and X+ 2, the third is in X+ 1 and the fourth is in X-I' The second point
characterizes the solution in the sense that if the unweighted errorf(x) - rex) is
either increased or decreased at this point then the absolute value of the
weighted error is increased at this point. We summarize the above observations.

LEMMA 1. If(X+ 1 U X+2) n (X-1 U X- 2) oJ 0 then r is a solution to (3).

THEOREM 1. Suppose M[f - r) < CX) and (X+ 1 U X+ 2) n (X-1 U X-2) = 0.

For this r define

arCx) = +1 ifx E X+ I U X+ 2

ar(x) = -1 ifx E X-I U X- 2

X r = X+I U X-I U X+ 2 U X- 2

H r = the convex hull of{ar(x) x: x E Xr}.

Ifr is not a solution to (3) then one ofthe following holds

(a) 0 ¢= Hr.

(b) 0 E Convexhullof{ar(x) x: x E (X+ 2 U X- 2) ~ (X+I U X_I)}'

Here 0 is the origin in Euclidean s-space while ~ denotes set subtraction.

Proof Suppose that r == pjq is not a solution to (3). Then there exists an
r* == p*(q* such that r* E Rand

M[f - r*) < M[f - r).

Observe that if t E X+ I then

W[t, f(t) - r(t)] > W[t, f(t) - r*(t)],

and also W[t,f(t) - r(t)] > O. Similarly, if t E X-I then

W[t,f(t) - ret)] < W[t,f(t) - r*(t)]

(9)

(10)

(11)

(12)

and W[t,f(t) - r(t)] < O. Thus if t E X+ 1 U X_I then each of the following is a
consequence of (2) and the previous definitions.

alt) W[t,f(t) - ret)] > ar(t) W[t,f(t) - r*(t)]

ar(t) [J(t) - ret)] > ar(t) (f(t) - r*(t)]

ar(t) [r*(t) - ret)] > 0

ar(t) [p*(t) - q*(t) ret)] > O.
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Next observe that if t E X+ 2 then using (2), and noting that ar(t) = +1,

W[t,f(t) - ret)] :> W[t,f(t) - r*(t)]

f(t) - r(t):> f(t) - r*(t)

a,(t) [r*(t) - r(t)]:> 0

ar(t) [p*(t) - q*(t) r(t)] :> O.

Finally, if t E X-2 then a,(t) = -I,

W[t,f(t) - r(t)] < W[t,f(t) - r*(t)],

(13)

and the inequality (13) follows.
To summarize our progress so far, we have proved that if r is not a solution

to (3) then the function h == p* - q* r is a point of Sr satisfying

(a) a,(x)h(x) > 0 'V x E X+ I U X_I

(b) ar(x)h(x):> 0 'V x E X+ 2 U X-2.
(14)

If0 E Hr then there exist points XI> X2, ... , Xk E Xr and constants al> a2, ... , ak'
where k < s +- 1, such that

at > 0 i = 1, ... , k

k

0= .L at ar(xt) Xt·
/=1

Using our basis for S" the last equality becomes

k

0= 2: a/ ar(xt)giXt) j = 1, ..., s.
t~1

Suppose that

s

hex) == 2: btgj(x).
t-I

Then

k

2: a jar(xj)h(Xj):> 0
i=1

(15)

(16)
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with strict inequality ifany ofthe points x/ is in X+ 1 U X-I' However, using (15)
and (16)

" "s2: a/ G,(x/) h(x/) = 2: a/ G,(x/) 2: bj g/x/)
/=1 i=1 j=1

s k

= 2: bj 2: a/ Gr(xi)gix/) = O.
j~1 i=1

Thus we conclude that no x/ is in X+ 1 U X-I' This completes the proof of
Theorem 1.

At this point we recall the following definition. If H is a finite dimensional
subspace of C(X) of dimension k, it is called a Haar subspace if every nonzero
element of H has at most k - 1 zeros.

The following lemma yields immediately a corollary to Theorem 1.

LEMMA 2. Let H be a Haar subspace of C(X) with a basis hl(x), ..., hn(x).
Let Y be a closed subset of X and let Gr(Y) be a continuous nonvanishing real­
valuedfunction on Y. Then

oE Convex hull {Gr(y)[hl(y), hl(y), ..., hn(y)]: y E Y} (17)

iff h E Hand Gr(Y) hey) ;;. 0 for all y E Y imply h =. O.

Proof Assume (17) holds. If there is a nonzero hE Hsuch that Gr(y)h(y);;.
o 'if y E Y, then Grh has at most k < n zeros XI> ••• , X". Thus there exists an
ho E H such that G,(x/)ho(x/) = 1 for i = 1, ... , k. Consequently, for sufficiently
small A> 0, G,(h + Aho) is strictly positive on Y. This contradiction completes
the first half of the proof. The remaining part of the lemma is a standard
result [2].

COROLLARY 1. Suppose that the hypotheses of Theorem 1 are satisfied, and
that Sr is a Haar subspace ofC(X). Then 0 rf= Hr.

THEOREM 2. Suppose that M[f- r] = d < 00 and r is a solution to (3). Define

8 1 ={x: x E X+ 1 U X+ 2}

82 = {-x: x EX_I U X-2}

H r = Convex hull of SI U S2'

Then the origin ofEuclidean s-space lies in Hr.
27
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Proof We first consider two uninteresting cases. If M[f- rJ = 0 then each
point of Xisin both X+ I and X-I' Thusift E Xis arbitrary, 1 E SI and-1 E S2'

Since 0 = (1) [f - f] the result is proved.

The second uninteresting case occurs when M [I- r] > 0 and

In this case also there exists atE X such that 1 E Sl and -1 E S2'

For the remainder of the proof we assume 0 < M[f - rJ = d < IX) and

(18)

With these hypotheses the following notation is well defined.

ar(x) = {+l x E X+ I UX+ 2

-1 x EX_I U X-2•

The convex hull Hr under consideration is the convex hull of{ar(x)x: x E Xr}.
Suppose that the theorem is false. Then by a classical result [2J there exists an

hE S" where

h==-p* +rq*

such that

Setting r == p/q, define

Observe that

a,(x) hex) > 0 V X E Xr.

p-Ap*
rA == q-Aq*'

(19)

(20)
-Ah

r-r),,=---.
q-Aq*

Because q(x) > 0 V X E X, 3 Al > 0 such that if 0,,;;; A,,;;; Al then q(x)­
Aq*(X) > 0 V X E X. We shall restrict our arguments to such A.

Observe that

I(x) - r),,(x) = I(x) - rex) + [rex) - rix)]

Ah(x)
= I(x) - rex) - q(x) _ Aq*(X) . (21)

We shall show that there exists a constant A6 > 0 such that if 0 < A";;; "6 then

M[f-r),,] <M[f-r]. (22)



(23)

(24)
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To begin the argument note that X+ 2 and X-2 are compact; hence, using (18)
it follows that there exists a d t > 0, where d t < d, such that

W[x,f(x) - rex)] ;;. -dt 'if x E X+2

W[x,f(x) - rex)] < dt 'if x E X-2•

Note also that x E X+ 2 imples f(x) - rex) > lex) and x E X- 2 implies f(x) ­
rex) < u(x).

We now examine the set X+ 2 • Let t E X+ 2 be arbitrary. Then there exists a
number fL(t) satisfying 0 < fL(t) < Al such that if0 < A< fL(t) then the following
hold.

(
dt +d)W[t,f(t) - rit)] ;;. - -2-

f( ) ()
u(t) + let)

t - r).. t;;. 2 .

Note that hex) is continuous, and there exists a neighborhood of t in which
urh> O. Consequently by continuity arguments we conclude that there exists
an open neighborhood N(t) about t such that x E N(t) and 0 < A< }-t(t) imply

(
3d+ dt)W[x,f(x) - rix)] > - -4-

u(x) ;;.f(x) - r)..(x) > lex).

The sets N(x) , x E X+ 2 , form an open cover of X+ 2 • Suppose N(xt), ... ,
N(xk) is a finite subcover. Let

A2 = min fLeX;)
l~t~k

Zt = U N(xt).
t<;;,<;;k

Then if x E Z 1 and 0 < A< A2 , (23) holds.
Using a similar argument for the points of X-2 we conclude that there exist

an open set Z2 containing X- 2 , and a A3 satisfying 0 < A3 < A2' such that if
x E Z2 and 0 < A< A3 then

3d+d
W[x,f(x) - r)..(x)] < -4-t

lex) <f(x) - r)..(x) < u(x).

Let Y == X ~ (Zt U Z2)' Then Yis compact and contains no points of X+2or
X-2' Consequently there exists a constant c > 0 such that x E Y implies

lex) + c <f(x) - rex) < u(x) - c. (25)



410 LOEB, MOURSUND, AND TAYLOR

Thus there exists a A4 satisfying 0 < 114 <:; .\3 such that 0 ~ II ~ 114 and x EO Y
imply

lex) <f(x) ~ r,,(x) < u(x).

For notational convenience define

e(x) == I(x) - rex)

sex) == sgn e(x).

Usingthecompaetnessof X+ I U X-I and (l9) it follows that

0==[ min S(X)h(X)] > O.
xEX+l UX-l

Now define

(26)

(28)

(29)

ZJ = {x E X: IW[x, e(x)] I> dl2 and s(x)h(x) > oI2}. (27)

Observe thatZ3 is open. Thus X - ZJ is compact and disjoint from X+I U X_I'
Consequently there exists a constant CI > 0 such that for all x E X - ZJ'

IW[x, e(x)] I ,;;;; Cl < d.

By a standard continuity argument there exists a A5 satisfying 0 < A5 ,;;;; A4 such
that 0 ~ A< A5 and x EX,..,. ZJ imply

I
CI +d

W[x,f(x) - r,,(x)] I<-2 .

LetZ4be the closure ofZJ. Then for x E Z4

o
IW[x, e(x)]/ ;;, d12, sex) hex) ;;, 2'

Let
[t = inf {Iyl: IW[x, y]! ;;, dl2 for some x E Z4}'

Then [t > 0 by the compactness of Z4 and the properties of W(x, y). Finally,
select A6 such that 0 < A6 < A5 , and 0 < A~ A6 implies Ilr - r,,11 < [to Then if
x E Z4 and 0 < A< A6 we have

sgn [f(x) - r,,(x)] = sgn [I(x) - rex)].

Moreover, if x E Z4 and 0 < A< A6 then

IW[x,f(x) - r,,(x)] I< d.

The inequalities (28) and (29) taken together imply that if 0 < A< A6 then (22)
is satisfied.

COROLLARY 2. LetfE C(X) and suppose r E R is a solution to (3). If Sr is a
Haar subspace and (X+! n X-2) U (X-I n X+ 2) = 0 then r is unique.
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Proof Iff E R then r =f Thus if ro is any solution to (3) we must have

ro =r.
Suppose then that f rf= Rand ro, r are both solutions to (3). Then for all

x EXr

ur(x)[f(x) - rex)] ? ur(x)[f(x) - ro(x)].
This implies

Ur(x) [ro(x) - rex)] ? O.

If ro == Po/qo where qo > 0 then for all x E Xr

ur(x) [Po(x) - qo(x) rex)] ? O.

Using Lemma 2 we conclude Po - qor =0; so ro =r.

THEOREM 3. Let X be an interval [a, b] and let r be such that OC! > M[f - r] > O.
If Sr is a Haar subspace and (X+ I n X+ 2) U (X-I n X-2) = 0, then r is a
solution to (3) iff there exist points x I < X2 < ... < X s+I in Xrsuch that

ur(Xt) = (_1)1+1 Ur(XI) i = 2, ..., s + 1.

Here s is the dimension ofSr'

Proof By Corollary 1 and Theorem 2, r is a solution iff0 E Hr. By a standard
argument ([1], page 74) 0 E Hr iff there exist s + 1 points XI < X2 < '" < Xs+I
in Xr such that ur(x/) = (_1)1+1 Ur(XI), i = 2, ..., s + 1.
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